8-800-200-86-86
Источники литературы о действии активных компонентов Кверцепроста

Источники литературы о действии активных компонентов Кверцепроста
Активные компоненты комплекса Кверцепрост® обладают выраженной активностью против всех ключевых возбудителей хронического бактериального простатита.
Источники:
1. Carroll D.E., Marr I. Staphylococcus aureus Prostatic abscess: a clinical case report and a review of the literature. BMC Infect Dis. 2017 Jul 21;17(1):509.
2. Lee D.S., Choe H.S., Kim H.Y. Acute bacterial prostatitis and abscess formation. BMC Urol. 2016 Jul 07;16(1):38.
3. Kim J.H., Yang W.J., Kim T.H. Klebsiella pneumonia-induced prostate abscess: How to work it up? Can Urol Assoc J. 2014 Nov 8(11-12):E841-844.
4. Hwang J.H., Hwang J.H., Lee S.Y., Lee J. Prostatic Abscess Caused by Klebsiella pneumoniae: A 6-Year Single-Center Study. J Clin Med. 2022 Apr 29;11(9).
5. Тюзиков И.А., Греков Е.А. Хронический простатит/синдром хронической тазовой боли: современные тренды и перспективы лечения с позиций доказательной медицины // Экспериментальная и клиническая урология. – 2022. –Т. 15. – № 1. – С. 90–100.
6. Podschun R., Ullmann U. Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev. 1998 Oct 11(4):589–603.
7. Глыбочко П.В., Чураков А.А. Хронический инфекционный простатит. – Саратов: изд-во Саратовского медицинского университета. – 2008.
8. Krupin Valentin N., et al. Хронический простатит/хроническая тазовая боль: что мы лечим? // Consilium Medicum. – 2019. –Т. 21. – № 7. – С. 42–48.
9. Тальберг П.И., Мазина С.Е., Андрюхин М.И. Комплексная терапия хронического простатита // Современные проблемы науки и образования. – 2015. – № 4.
10. Крупин А. В., Крупин В. Н., Артифексова А. А. Значение микробного фактора в патогенезе хронического бактериального простатита // Медицинский вестник Башкортостана. – 2013. – № 2.
11. Xue Y., Du M., Zhu M.J. Quercetin Prevents Escherichia coli O157:H7 Adhesion to Epithelial Cells via Suppressing Focal Adhesions. Front Microbiol. 2019 Jan 16;9:3278.
12. Liu T., Zhu Y. Antibacterial effects and mechanisms of quercetin-β-cyclodextrin complex mediated photodynamic on Escherichia coli O157:H7. Arch Microbiol. 2024 Oct 23;206(11):445.
13. Wang S., Yao J., Bacteriostatic Effect of Quercetin as an Antibiotic Alternative In Vivo and Its Antibacterial Mechanism In Vitro. J Food Prot. 2018 Jan;81(1):68–78.
14. Pal A., Tripathi A. Quercetin inhibits carbapenemase and efflux pump activities among carbapenem-resistant Gram-negative bacteria. APMIS. 2020 Mar;128(3):251–259.
15. Nguyen T.L.A., Bhattacharya D. Antimicrobial Activity of Quercetin: An Approach to Its Mechanistic Principle. Molecules. 2022 Apr 12;27(8):2494.
16. Jaisinghani R. N. Antibacterial properties of quercetin. Microbiology Research. 2017; 8:6877. DOI:10.4081/mr.2017.6877
17. Aydemir Ö., Ormanoğlu G. Investigation of in vitro efficacy of quercetin-meropenem combination in carbapenemase-producing Klebsiella pneumoniae isolates. J Infect Dev Ctries. 2023 Sep 30;17(9):1325–1329.
18. Adeosun I.J., Baloyi I.T., Cosa S. Anti-Biofilm and Associated Anti-Virulence Activities of Selected Phytochemical Compounds against Klebsiella pneumoniae. Plants (Basel). 2022 May 27;11(11):1429.
19. Lin Y., Zhang Y., Cao J. Quercetin Rejuvenates Sensitization of Colistin-Resistant Escherichia coli and Klebsiella Pneumoniae Clinical Isolates to Colistin. Front Chem. 2021 Nov 25;9:795150.
20. Pal A., Tripathi A. Demonstration of bactericidal and synergistic activity of quercetin with meropenem among pathogenic carbapenem resistant Escherichia coli and Klebsiella pneumoniae. Microb Pathog. 2020 Jun;143:104120.
21. Mohamed E.H., Alghamdi Y.S., Susceptibility Assessment of Multidrug Resistant Bacteria to Natural Products. Dose Response. 2020 Jul 6.
22. Al Hagbani T., Rizvi S.M.D., Shakil S., Lila A.S.A. Nano-Formulating Besifloxacin and Employing Quercetin as a Synergizer to Enhance the Potency of Besifloxacin against Pathogenic Bacterial Strains: A Nano-Synergistic Approach. Nanomaterials (Basel). 2023 Jul 16.
23. Lee T., Lee S., 3-O-Substituted Quercetin: an Antibiotic-Potentiating Agent against Multidrug-Resistant Gram-Negative Enterobacteriaceae through Simultaneous Inhibition of Efflux Pump and Broad-Spectrum Carbapenemases. ACS Infect Dis. 2024 May 10.
24. Chittasupho C., Manthaisong A. Effects of Quercetin and Curcumin Combination on Antibacterial, Antioxidant, In Vitro Wound Healing and Migration of Human Dermal Fibroblast Cells. Int J Mol Sci. 2021 Dec 23.
25. Duracka M., Lukac N. Antibiotics Versus Natural Biomolecules: The Case of In Vitro Induced Bacteriospermia by Enterococcus Faecalis in Rabbit Semen. Molecules. 2019 Nov 27.
26. de Alencar Pereira E. W., Fontes V.C. et. al. Antimicrobial effect of quercetin against Streptococcus pneumoniae. Microbial Pathogenesis. 2023 Jul; 180.
27. Zeng Y., Nikitkova A., Abdelsalam H., Li. J., Xiao J. Activity of quercetin and kaemferol against Streptococcus mutans biofilm. Arch Oral Biol. 2019 Feb; 98:9–16.
28. Lv Q., Zhang P., Quan P. et. al. Quercetin, a pneumolysin inhibitor, protects mice against Streptococcus pneumoniae infection. Microbial Pathogenesis. 2020 Mar;140:103934.
29. Zhou Y., Zhang A., Sun H. et al. Synergistic effect of quercetin and antibiotics in the treatment of infections caused by Staphylococcus aureus and Streptococcus pneumonia. Journal of Medical Microbiology. 2012.
30. Vipin C., Saptami K. Potential synergistic activity of quercetin with antibiotics against multidrug-resistant clinical strains of Pseudomonas aeruginosa. PLoS One. 2020 Nov 6;15(11):e0241304.
31. Mirzaei A., Nasr E.B., Ghanadian M., Moghim S. Alhagi maurorum extract modulates quorum sensing genes and biofilm formation in Proteus mirabilis. Sci Rep. 2022 Aug 17;12(1):13992.
32. Abreu A.C., Serra S.C. Combinatorial Activity of Flavonoids with Antibiotics Against Drug-Resistant Staphylococcus aureus. Microb Drug Resist. 2015 Dec;21(6):600–609
33. Das S., Batra S., Gupta P.P. Identification and evaluation of quercetin as a potential inhibitor of naphthoate synthase from Enterococcus faecalis. J Mol Recognit. 2019 Nov;32(11):e2802.
34. Sanches A.W., Santos R.R.C.D. Flavonoids isolated from Vismia macrophylla Kunth against resistant bacteria. Nat Prod Res. 2024 May 29:1–7.
35. Zimmerman T., Ibrahim S.A. Quercetin Is a Novel Inhibitor of the Choline Kinase of Streptococcus pneumoniae. Antibiotics (Basel). 2022 Sep 19;11(9):1272.
36. Abbas M., Gururani M.A. Antimicrobial Properties and Therapeutic Potential of Bioactive Compounds in Nigella sativa: A Review. Molecules. 2024 October; 29(20):4914.
37. Singh G., Kumar P. Phytochemical study and screening for antimicrobial activity of flavonoids of Euphorbia hirta. Int J Appl Basic Med Res. 2013 Jul; 3(2):111–116
38. Rajasekharan S.K., Ramesh S. Burdock root extracts limit quorum-sensing-controlled phenotypes and biofilm architecture in major urinary tract pathogens. Urolithiasis. 2015 Feb; 43(1):29–40.
39. Yue Y., Shi M. Lycopene Ameliorated DSS-Induced Colitis by Improving Epithelial Barrier Functions and Inhibiting the Escherichia coli Adhesion in Mice. J Agric Food Chem. 2024 Mar 20.
40. Malik A., Najda A. Characterization of Citrusnobilis Peel Methanolic Extract for Antioxidant, Antimicrobial, and Anti-Inflammatory Activity. Molecules. 2021 Jul 16; 26(14):4310.
41. Divyadharsini V., Uma Maheswari T.N., Rajeshkumar S. Assessment of Antimicrobial Activity of Lycopene, Vitamin E, and Lycopene-Vitamin E Combination Against Staphylococcus aureus, Streptococcus mutans, Enterococcus faecalis, and Candida albicans: An In Vitro Study. Cureus. 2023 Jul 25; 15(7):e42419.
42. Wang L., Dai F., Yang Y., Zhang Z. Zeolitic Imidazolate Framework-8 with Encapsulated Naringin Synergistically Improves Antibacterial and Osteogenic Properties of Ti Implants for Osseointegration. ACS Biomater Sci Eng. 2022 Sep 12; 8(9):3797–3809.
43. Jing X.H., Zhao G.Y. Naringin alleviates pneumonia caused by Klebsiella pneumoniae infection by suppressing NLRP3 inflammasome. Biomed Pharmacother. 2024 Jan; 170:116028.
44. Chau T.P., Samdani M.S., Kuriakose L.L., Sindhu R. Assessment of multi-biomedical efficiency of Andrographis paniculata shoot extracts through in-vitro analysis and major compound identification. Environ Res. 2024 Feb 1; 242:117779.
45. El-Shibani F.A.A., Sulaiman G.M. Polyphenol Fingerprint, Biological Activities, and In Silico Studies of the Medicinal Plant Cistus parviflorus L. Extract. ACS Omega. 2023 Dec 4; 8(50):48269–48279.
46. Ozçelik B., Kartal M., Orhan I. Cytotoxicity, antiviral and antimicrobial activities of alkaloids, flavonoids, and phenolic acids. Pharm Biol. 2011 Apr; 49(4):396–402. doi: 10.3109/13880209.2010.519390. Epub 2011 Mar 11. PMID: 21391841.
47. Han C.H., Yang C.H. Synergistic effect between lycopene and ciprofloxacin on a chronic bacterial prostatitis rat model. Int J Antimicrob Agents. 2008 Feb; 31(1):102–107.
48. Aygül A., Öztürk İ. Quercetin inhibits swarming motility and activates biofilm production of Proteus mirabilis possibly by interacting with central regulators, metabolic status or active pump proteins. Phytomedicine. 2019 Apr; 57:65–71. doi: 10.1016/j.phymed.2018.12.014. Epub 2018 Dec 11. PMID: 30668324.
49. Bakar N.S., Zin N.M., Basri D.F. Synergy of flavone with vancomycin and oxacillin against vancomycin-intermediate Staphyloccus aureus. Pak J Pharm Sci. 2012 Jul; 25(3):633–638.
50. Mahavy C.E., Razanatseheno A.J., Mol A., Ngezahayo J. et. al. Edible Medicinal Guava Fruit (Psidium guajava L.) Are a Source of Anti-Biofilm Compounds against Pseudomonas aeruginosa. Plants (Basel). 2024 Apr 17; 13(8):1122.
51. Binsuwaidan R., El-Masry T.A. Investigating the Antibacterial, Antioxidant, and Anti-Inflammatory Properties of a Lycopene Selenium Nano-Formulation: An In Vitro and In Vivo Study. Pharmaceuticals (Basel). 2024 Nov 27; 17(12):1600. doi: 10.3390/ph17121600. PMID: 39770442; PMCID: PMC11679940.
52. Atunnise A.K., Sossou IT, Bioactive compounds from fermented Vernonia amygdalina leaf: Potent antibiotics against multidrug-resistant Escherichia coli and Salmonella typhi. In Silico Pharmacol. 2024 Nov 19;1 2(2):106.
53. Wang R., Wu N. Naringin exerts antibacterial and anti-inflammatory effects on mice with Staphylococcus aureus-induced osteomyelitis. J Biochem Mol Toxicol. 2024 Jul; 38(7):e23753.
54. Wang Z., Ding Z. Antioxidant and antibacterial study of 10 flavonoids revealed rutin as a potential antibiofilm agent in Klebsiella pneumoniae strains isolated from hospitalized patients. Microb Pathog. 2021 Oct; 159:105121.
55. Verma A.K., Ahmed S.F. Molecular docking and simulation studies of flavonoid compounds against PBP-2a of methicillin-resistant Staphylococcusaureus. J Biomol Struct Dyn. 2022 40(21):10561–10577.
56. Mohamed S.A., Mahmoud H.E., Lactoferrin/pectin nanocomplex encapsulating ciprofloxacin and naringin as a lung targeting antibacterial nanoplatform with oxidative stress alleviating effect. Int J Biol Macromol. 2024 Mar; 261(Pt 2):129842.
57. Annapoorani A., Umamageswaran V. Computational discovery of putative quorum sensing inhibitors against LasR and RhlR receptor proteins of Pseudomonas aeruginosa. J Comput Aided Mol Des. 2012 Sep; 26(9):1067–1077.
58. Tang C., Li Q., Lin T. Lycopene attenuates Staphylococcus aureus-induced inflammation via inhibiting α-hemolysin expression. Microbes Infect. 2021 Nov-Dec; 23(9-10):104853.
59. Miljković V.M., Nikolić L. Chemical Profile and Antioxidant and Antimicrobial Activity of Rosa canina L. Dried Fruit Commercially Available in Serbia. Int J Mol Sci. 2024 Feb 21; 25(5):2518.
60. Han G., Lee D.G. Naringin generates three types of reactive oxygen species contributing differently to apoptosis-like death in Escherichia coli. Life Sci. 2022 Sep 1; 304:120700.
61. Adamczak A., Ożarowski M., Karpiński T.M. Antibacterial Activity of Some Flavonoids and Organic Acids Widely Distributed in Plants. J Clin Med. 2019 Dec 31; 9(1):109.
62. Yang Y., Tao B. Functionalization of Ti substrate with pH-responsive naringin-ZnO nanoparticles for the reconstruction of large bony after osteosarcoma resection. J Biomed Mater Res A. 2020 Nov 1; 108(11):2190–2205.
63. Zhao G., Huang Q., Therapeutic Effect and Safety Evaluation of Naringin on Klebsiella pneumoniae in Mice. Int J Mol Sci. 2023 Nov 3; 24(21):15940.
64. Gutiérrez-Venegas G., Ventura-Arroyo J.A., Arreguín-Cano J.A., Ostoa-Pérez M.F. Flavonoids inhibit iNOS production via mitogen activated proteins in lipoteichoic acid stimulated cardiomyoblasts. Int Immunopharmacol. 2014 Aug; 21(2):320–327.
Источник изображений на данной странице – Shutterstock / Fotodom.